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Optimal sampling design for estimating spatial distribution and
abundance of a freshwater mussel population
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Abstract. We compared the ability of simple random sampling (SRS) and a variety of systematic
sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial dis-
tribution of freshwater mussels. Sampling simulations were conducted using data obtained from a
census of freshwater mussels in a 40 3 33 m section of the Cacapon River near Capon Bridge, West
Virginia, and from a simulated spatially random population generated to have the same abundance
as the real population. Sampling units that were 0.25 m2 gave more accurate and precise abundance
estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling
with $2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more
accurate when the distance between sampling units across the stream was less than or equal to the
distance between sampling units along the stream. Three measures for quantifying spatial clustering
were examined: Hopkins Statistic, the Clumping Index, and Morisita’s Index. Morisita’s Index was
the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial random-
ness. SYS designs with units spaced equally across and up stream provided the most accurate pre-
dictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs
with sampling units equally spaced both across and along the stream would be appropriate for
sampling freshwater mussels even if no information about the true underlying spatial distribution of
the population were available to guide the design choice.

Key words: systematic sampling, quadrat sampling, freshwater mussels, spatial distribution, krig-
ing, estimating abundance.

Successful conservation of a biological popu-
lation often requires a reliable description of its
distribution and abundance. This information is
needed to address questions regarding the
number of individuals present, the locations of
the individuals within a site, and how the abun-
dance or spatial distribution has changed as a
result of an impact or management action. Sam-
pling methods for describing spatial distribu-
tion and abundance vary widely. Simple ran-
dom sampling (SRS) is a standard method that
provides unbiased estimates of abundance or
density regardless of the population’s spatial
distribution (Thompson 1992). Implementing
SRS is cumbersome in a biological survey. How-
ever, systematic sampling (SYS) is relatively
easy to implement in the field. Moreover, if SYS
is implemented using multiple random starts,
error can be estimated accurately, regardless of
the population’s spatial distribution. McArthur
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(1987) compared the ability of SRS, stratified
random sampling, SYS with and without strat-
ification, and unequal probability sampling to
predict mean concentration of pollution over a
region. His results indicated that stratified SYS
was the most efficient of these designs. How-
ever, SYS without stratification was the next
most efficient method when information on how
best to stratify was not available. SYS is pre-
ferred for sampling rare, spatially clustered
populations in the absence of prior information
on distributions (Christman 2000).

Freshwater mussels are an imperiled taxon
with projected extinction rates in the same
range as tropical species (Ricciardi and Ras-
mussen 1999). Accurate estimates of their spatial
distribution and abundance have obvious ben-
efits to their conservation. Smith et al. (2001)
demonstrated the value of estimates of abun-
dance and predictions of spatial distribution for
an assessment of endangered species of fresh-
water mussels at a bridge construction site on
the Allegheny River in Pennsylvania. A relative-
ly large sampling effort is required to obtain ac-
curate estimates and spatial predictions because
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freshwater mussels are often rare and spatially
clustered (Downing and Downing 1992, Cawley
1993, Strayer and Smith 2003). Evaluations of
simulated sampling designs based on field-col-
lected data can be useful for identifying efficient
(less costly) and reliable sampling methods and
for promoting application of rigorous methods
for sampling freshwater mussel populations.

Designing an efficient survey for freshwater
mussels depends on characteristics of the site
and population of interest, survey objectives,
and the level of precision that is required. If the
objective is to estimate abundance accurately
and precisely or to predict spatial distribution,
then one has a wide array of sampling designs
from which to choose. A number of studies have
indicated that adaptive sampling or a combi-
nation of systematic and adaptive sampling is
effective when estimating density of rare or
clustered populations (Smith et al. 1995,
Thompson and Seber 1996, Christman 2000).
However, recent applications to freshwater mus-
sels have indicated that adaptive sampling in-
creases detection of rare species and collection
of individual mussels, but does not decrease
sampling error compared to conventional sam-
pling (Strayer et al. 1997, Smith et al. 2003).

We compared a variety of SRS and SYS de-
signs using data from a real freshwater mussel
population and a simulated spatially random
population generated to have the same abun-
dance as the real population to determine how
well the designs estimated abundance, quanti-
fied the degree of spatial clustering, and pre-
dicted spatial distribution. We also considered
the effect of sampling-unit size on the perfor-
mance of each sampling design. Both 1-m2 and
0.25-m2 sampling units are used commonly for
sampling freshwater mussels (Strayer and Smith
2003). Downing and Downing (1992) recom-
mended the use of 1-m2 sampling units for
freshwater mussel surveys, but clustered or con-
tagious populations may be more efficiently
sampled using smaller sampling units (Beall
1939, Finney 1946, Taylor 1953). We make spe-
cific recommendations for each of the research
goals based on comparisons of the designs.

Methods

Study populations

The data used in our study have been used
in other sampling simulation studies (Strayer

and Smith 2003, Salehi and Smith 2005). Mus-
sels were censused over 11 d in June and July
1994 on a section of pool-run habitat in the Ca-
capon River near Capon Bridge, West Virginia.
The census required 35.5 h of search time (5
people averaging 7.1 h/person search time). The
river section was approximately rectangular and
was 33 m wide (bank to bank) by 40 m long.
Water depth ranged from 12 to 75 cm (median
depth 5 52 cm). Dominant substrate types were
large gravel and small cobble with interstitial
sand. Water clarity was high, so visual obser-
vations were possible. A grid of 0.25-m2 cells
was superimposed on the entire surface area to
provide spatial references for each mussel. Each
cell was searched thoroughly, and all mussels
found were measured lengthwise and returned
to the substrate.

The population consisted of 1205 mussels be-
longing to 3 species: 901 Elliptio complanata
(eastern elliptio), 277 Elliptio fisheriana (northern
lance), and 27 Lampsilis cariosa (yellow lamp-
mussel). In ecological terms, 3 species is a mus-
sel community rather than a population, but the
term real population is used throughout this man-
uscript to refer to all mussels at the census lo-
cation. The real population was spatially aggre-
gated into 2 prominent bands, a larger band in
the center of the stream and a smaller off-center
band (Fig. 1). Observed mussel locations were
recorded to the nearest 0.25 m2.

A pseudo-simple random sampling algorithm
(S-Plus, version 4.5, MathSoft, Seattle, Washing-
ton) was used to generate 1205 random loca-
tions in an area the same size as the census area
(33 3 40 m). This procedure was done to create
a spatially random simulated population that
could be used to understand how sampling de-
signs performed when studying a non-clustered
population. The simulated population was gen-
erated to have the same abundance as the real
population, and individuals were tallied within
0.25-m2 cells.

Survey designs

We compared SRS and SYS designs that in-
cluded 1 to 6 random starting points. The sam-
pling effort (% of the site sampled) ranged from
0.5% to 10.4% using both 0.25-m2 and 1-m2 sam-
pling units. We simulated 20 SRS designs and
198 different SYS designs. Sampling effort (1%,
2%, . . . , 10%) differed for each SRS design for
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FIG. 1. Distribution of a freshwater mussel population in a pool–run on the Cacapon River near Capon
Bridge, West Virginia. Each circle represents the location of an individual mussel.

the 2 sampling-unit sizes (0.25 m2 and 1 m2).
SYS designs were created by varying the num-
ber of random starts and the distance between
sampling units across (DAC) and along (DAL) the
stream (Table 1). The 198 SYS designs consisted
of 125 designs using 0.25-m2 sampling units and
73 designs using 1-m2 sampling units. Each of
the 218 design options (20 SRS 1 198 SYS) was
simulated 1000 times. Mean, variance, and
skewness were calculated for estimates of abun-
dance and spatial clustering based on the 1000
sampling realizations. Relative efficiency (RE)
was used to compare the performances of 0.25-

m2 and 1-m2 sampling units for the 83 designs
that used both sampling-unit sizes. We also
used RE to compare SYS and SRS designs with
the same level of sampling effort. For both com-
parisons, RE was calculated as

ˆv̂ar( T )Design1RE 5 [1]
ˆv̂ar( T )Design2

where is the estimated sampling variancev̂ar
and T̂ is the estimated abundance. The SRS de-
sign variance was in the numerator when SRS
designs were compared to SYS designs. Thus, RE
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TABLE 1. Systematic sampling (SYS) designs examined using simulations. Each SYS design was specified by
the number of random starts (RS) for a given distance across the stream between sampling units (DAC) and
distance along the stream between sampling units (DAL), and by the sampling-unit size (0.25 m2 or 1 m2).
Percent sampled is the range of values for the % of the site sampled in association with each design. Each
design was used to simulate sampling from a real population and a simulated population 1000 times (see text
for details). Blank spaces 5 design not included.

DAC 3 DAL DAC/DAL

0.25 m2

RS % of site sampled

1 m2

RS % of site sampled

2 3 8
8 3 2
3 3 12

12 3 3
5 3 20

0.25
4.00
0.25
4.00
0.25

1
1
1, 2, 3
1, 2, 3
1, 2, 3, 4, 5

6.3
6.3

2.8–8.3
2.8–8.3
1.0–5.0

1
1
1, 2, 3
1, 2, 3

6.4
7.6

3.3–8.3
3.2–8.5

20 3 5
7 3 28

28 3 7
8 3 25

25 3 8

4.00
0.25
4.00
0.32
3.13

1, 2, 3, 4, 5
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

1.0–5.0
0.5–3.1
0.5–3.1
0.5–3.0
0.5–3.0

3 3 9
9 3 3

0.33
3.00

1
1

3.7
3.7

1
1

4.2
4.2

4 3 12
12 3 4

6 3 17
17 3 6

4 3 9

0.33
3.00
0.35
2.83
0.44

1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3

2.1–10.4
2.1–10.4
1.0–4.9
1.0–4.9
2.8–8.3

1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3

2.7–10.4
2.3–10.4
1.4–4.9
1.1–4.9
3.4–8.3

9 3 4
5 3 10

10 3 5
7 3 14

14 3 7

2.25
0.50
2.00
0.50
2.00

1, 2, 3
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5

2.8–8.3
2.0–10.0
2.0–10.0
1.0–5.1
1.0–5.1

1, 2, 3
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5

3.0–8.3
2.1–10.0
2.4–10.0
1.1–5.1
1.4–5.1

10 3 20
20 3 10

3 3 5
5 3 3
4 3 4

0.50
2.00
0.60
1.67
1.00

1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1
1
1

0.5–3.0
0.5–3.0

6.7
6.7
6.3

1
1
1

6.7
7.4
6.8

5 3 5
6 3 6
7 3 7

10 3 10
14 3 14

1.00
1.00
1.00
1.00
1.00

1
1, 2, 3
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5, 6

4.0
2.8–8.3
2.0–10.2
1.0–5.0
0.5–3.1

1
1, 2, 3
1, 2, 3, 4, 5
1, 2, 3, 4, 5

4.2
3.2–8.3
2.3–10.2
1.2–5.0

. 1 if the SYS design was more efficient than the
SRS design (i.e., if SYS sampling variance was
smaller). Variances of designs using 1-m2 sam-
pling units were in the numerator when identical
designs with the 2 different sampling-unit sizes
were compared. Thus, RE . 1 if the design using
0.25-m2 sampling units was more efficient than
the same design using 1-m2 sampling units.

Estimating abundance

Abundance estimates from SRS and SYS de-
signs and sampling variances of those estimates

were calculated 2 ways. Method 1 assumed sim-
ple random selection of sampling units. Strictly
speaking, this method is not appropriate for
SYS and will lead to unbiased variance esti-
mates only if the population of sampling units
can be described as being in random order. The
sampling units contained counts from the real
population, so units that were close to each oth-
er tended to be similar. Therefore, method 1
should tend to overestimate the variance of the
estimator (Thompson 1992). The abundance es-
timate by method 1 is



2005] 529OPTIMAL SAMPLING FOR FRESHWATER MUSSELS

mA
T̂ 5 y [2]OSRS jam j51

and the sample variance of this abundance es-
timator is

mM 2 m 1
2 2ˆ̂ ¯var( T ) 5 A (y 2 y) [3]OSRS j21 2Mma m 2 1 j51

where M is the number of sampling units in the
study site, m is the number of sampling units in
the sample, A is the area of the study site, a is
the sampling-unit size, yj is the number of in-
dividuals found in each sampling unit, and ȳ is
the mean number of individuals/sampling unit.

Method 2 for estimating abundance was used
only for SYS designs that included $2 random
starts. Mean abundance and its sampling vari-
ance were calculated using the unbiased esti-
mators available when cluster sampling is used
with $2 primary units that are randomly se-
lected without replacement (Thompson 1992).
The abundance estimate by method 2 is

n miNˆ ¯ ¯T 5 y , y 5 y [4]O OSYS i i i jn i51 j51

where N is the number of primary units in the
study site, n is the number of primary units in
the sample, mi is the number of secondary units
(i.e., sampling units in the ith primary unit), ȳi is
the mean number of individuals/primary unit,
and yij is the number of mussels found in the jth

sampling unit of the ith primary unit. The sam-
ple variance of this abundance estimator is

nN(N 2 n) 1
2ˆ̂ ¯ ¯var( T ) 5 (y 2 y) ,OSYS i[ ]n n 2 1 i51

n1
¯ ¯y 5 y . [5]O in i51

Confidence interval (CI) coverage for both
abundance estimates was found by calculating
the 95% CI for each of the 1000 realizations of
each of the 218 sample designs. CIs for the
abundance estimate and sampling variance
were calculated as

ˆ ˆ̂Î95% CI 5 T 6 (t ) var( T ) [6]12a/2,df

where a 5 0.05 (probability of a Type I error)
and df (degrees of freedom) were determined by
the formulae used. For CIs based on equations
2 and 3, which treat the secondary units as if
they were selected randomly, df 5 m 2 1, the
number of secondary units in the sample minus

1. For CIs based on equations 4 and 5, which
required $2 primary units, df 5 n 2 1, the num-
ber of primary units in the sample minus 1. The
proportion of the 1000 CIs calculated for a given
design that contained the true population abun-
dance was the CI coverage. Ideally, the empirical
coverage should be equal to nominal coverage,
1 2 a.

Accuracy of abundance estimates from each
survey design was compared by calculating rel-
ative bias as

ˆRB 5 (E[T ] 2 t)/t [7]

where E[T̂] is the expected value of the abun-
dance estimate attained from all 1000 sample
realizations and t is the true abundance calcu-
lated from the census. Accuracy of variance es-
timates also was examined for all SYS designs
with $2 random starts. We compared the vari-
ance estimate found using equation 5 to the true
variance of abundance found in the census, st

2

using the following measure of relative bias of
variance:

2 2ˆ̂RBV 5 [var( T ) 2 s ]/s . [8]SYS t t

Bias of variances was examined because previ-
ous research (Hedayat and Sinha 1991) indicat-
ed that increasing the number of random starts
in a SYS design decreased bias in estimates of
variability.

Quantifying degree of spatial clustering

Three statistics that measure spatial cluster-
ing, the Hopkins Statistic, Morisita’s Index, and
the Clumping Index, were calculated. The Hop-
kins Statistic (Cressie 1993) is

p p

2 2H 5 U W [9]O OF i i@i51 i51

where Ui is the distance between the ith random-
ly chosen point in the survey area and the clos-
est location of an observed mussel and Wi is the
distance between the location of the ith randomly
chosen observed mussel and the nearest mussel.
The p randomly chosen locations of observed
mussels are those mussel locations that fall
within the bounds of the sampling units of a
specific sample. Previous studies have indicated
that the Hopkins Statistic is the most effective
method of detecting spatial clustering (see Dig-
gle et al. 1976, Byth and Ripley 1980, Upton and
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Fingleton 1985, Cressie 1993). Holgate (1965)
suggested that the Hopkins Statistic is more
sensitive to departures from complete spatial
randomness than most nearest-neighbor statis-
tics because clustering simultaneously reduces
the distances between observations (Wi) and in-
creases the distances between observations and
random points within the site (Ui) (Holgate
1965). The sampling distribution of WF was ap-
proximated by the F distribution for the random
population with numerator and denominator df
5 2 3 the number of mussels located in each
sampling unit (Cressie 1993).

Morisita’s Index (Morisita 1959, Cressie 1993) is

m 
 [y (y 2 1)]O j jI 5 m  d j51 

[10]
ˆ ˆ[T · ( T 2 1)] SRS SRS

where m is the number of sampling units in the
sample, yj is the number of individuals found in
each sampling unit, and T̂SRS is estimated abun-
dance. Morisita’s Index has been proposed as be-
ing unaffected by changes in density (Morisita
1971). This characteristic suggests that surveys
of varying levels of effort are likely to yield con-
sistent results, provided a minimum level of ef-
fort is attained.

The Clumping Index (Cressie 1993) is

ˆ ˆIC 5 [var( T )/T ] 2 1. [11]SRS SRS

The clumping index, the most straightforward
of the 3 statistics compared here, is a slight var-
iation of the variance/mean ratio. Morisita’s In-
dex and the Clumping Index were calculated as-
suming a simple random sample so that these
measures could be calculated for all designs in
a consistent manner. As a consequence, differ-
ences in bias of these measures for different de-
signs are attributable solely to the locations of
the individual mussels found by the respective
designs.

Measures that quantify clustering produce
values that range from those representing a uni-
form population to those representing an ex-
tremely clumped distribution (Ludwig and
Reynolds 1988). Values representing random
distributions tend to fall towards the uniform
end of the spectrum. Relative bias of measures
of clumping was calculated by dividing the dif-
ference between the true value (calculated from
the real population) and the estimated value for
each measure by the true value of the measure.

For example, the relative bias of the Hopkins sta-
tistic for a given design was calculated as (HF 2
ĤF)/HF. Relative bias for each measure was cal-
culated for each design to understand how dif-
ferent design options affected accuracy in esti-
mating degree of clustering.

Predicting spatial distribution

The effect of survey design on predictions of
spatial distribution was examined using a small
subset of all survey designs at a fixed level of
sampling effort (;3% of the site sampled).
These designs included 1 SRS design and 5 SYS
designs (each with 3 random starts) that repre-
sented the full spectrum of SYS options in terms
of DAC and DAL. For each selected design, a sam-
ple was drawn and kriging was used to predict
the mussel count for each of the 5280 0.25-m2

sampling units using GS1 (version 5, Gamma
Design Software, Plainwell, Michigan). The
sampling and kriging process was repeated 503
for each of the 6 designs for a total of 300 kriged
predictions. GS1 allows the user to plot semi-
variogram data and to choose the model that
best fits the data by comparing different options
using model residual sum of squares (RSS). In-
spection of the spatial correlation in each the 300
sample realizations confirmed that modeling the
semivariograms as isotropic (i.e., having ap-
proximately equal decrease in spatial correlation
in all directions) was more appropriate than the
alternative, anisotropic semivariogram models.
Other semivariogram options, such as type of
model (spherical, exponential, Gaussian, or lin-
ear) and the values of nugget variance, sill, and
range were selected based on the model RSS.

Two summaries of prediction error were cal-
culated for kriged predictions. Spatial predic-
tion error was compared using statistics based
on the mean squared error (MSE). The Summed
Mean Squared Error (SMSE), which is analo-
gous to the Integrated Mean Squared Error (Cox
et al. 1997) but for discrete data, is

m
2SMSE 5 [( ŷ 2 y ) ] [12]O j j

j51

where yj is the observed count for the jth sam-
pling unit in the study site and ŷj is the pre-
dicted count for the jth sampling unit. The Max-
imum Mean Squared Error (MMSE) (Cox et al.
1997) is
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TABLE 2. Summary of relative efficiency of designs using 0.25-m2 sampling units vs designs using 1-m2

sampling units. See equation 1 in text for calculation of relative efficiency. SRS 5 simple random sampling.
SYS 5 systemic sampling.

Designs Population
No. of

designs Minimum
25th

percentile Median Mean
75th

percentile Maximum

SYS and SRS
SYS and SRS
SYS only
SYS only

Real
Simulated
Real
Simulated

83
83
73
73

0.07
0.43
0.07
0.43

1.29
1.02
1.26
1.05

1.65
1.20
1.59
1.30

1.78
1.28
1.78
1.33

2.14
1.52
2.22
1.54

3.72
2.84
3.72
2.84

TABLE 3. Summary of relative efficiency of systematic sampling designs vs simple random sampling designs
for the freshwater mussel population. Abbreviations and design descriptors as in Tables 1 and 2. See equation
1 in text for calculation of relative efficiency. Random starts 5 $2 for all situations.

DAC/DAL

Sampling-
unit size (m2)

No. of
designs Minimum

25th

percentile Median Mean
75th

percentile Maximum

#1
#1
.1
.1

1
0.25
1
0.25

30
58
20
39

1.14
0.98
0.57
0.45

1.44
1.07
0.89
0.62

1.58
1.24
1.08
0.72

1.61
1.24
1.02
0.92

1.77
1.31
1.16
1.27

2.15
2.05
1.37
1.68

2MMSE 5 max E[( ŷ 2 y ) ], [13]j j
y ∈Mj

which compares designs based on the maxi-
mum squared difference between the predicted
and observed counts.

Results

Estimating abundance

In most cases, designs that used 0.25-m2 sam-
pling units had smaller variances than designs
that used 1-m2 sampling units (Table 2). Eighty-
one percent (67 out of 83) of the designs using
0.25-m2 sampling units were more efficient (i.e.,
had smaller variance) than the same design us-
ing 1-m2 sampling units when sampling the real
population. In contrast, 55% (46 out of 83) of the
designs using 0.25-m2 sampling units were
more efficient than designs using 1-m2 sampling
units when sampling the simulated population.
The superior efficiency of 0.25-m2 sampling
units was even more apparent when the com-
parison was limited to SYS designs. Sampling
units that were 0.25 m2 were equally or more
efficient than 1-m2 sampling units for 86% (63
out of 73) of the SYS designs when sampling the
real population and 84% (61 out of 73) of the
SYS designs when sampling the simulated pop-
ulation (Table 2).

SYS designs were consistently more efficient
than SRS designs when sampling the real pop-
ulation and when distances between sampling
units in SYS designs were chosen appropriately
and .1 random starting point was used (Table
3). Variability in density across the stream was
greater than variability along the stream (Fig. 1).
Therefore, appropriate systematic samples were
those for which DAC # DAL. When DAC/DAL # 1
and $2 random starts were used, SYS designs
were more efficient than SRS for 100% of the 30
designs using 1-m2 sampling units and 98% (53
out of 54) of the designs using 0.25-m2 sampling
units. When DAC/DAL . 1 and $2 random starts
were used, SYS designs were more efficient than
SRS designs in only 35% (7 out of 20) of the
designs using 1-m2 sampling units and 67% (26
out of 39) of the designs using 0.25-m2 sampling
units (Table 3).

Relative bias (RB) of abundance estimates was
#0.01 except when equation 4 (abundance esti-
mate based on cluster sampling) was used with
SYS designs with 1 random start and 1-m2 sam-
pling units. In those instances, mean RB was
0.204 when DAC/DAL # 1 and 0.41 when DAC/
DAL . 1. These designs also showed some bias
in abundance estimates when equation 2 (abun-
dance estimate based on SRS) was used with
SYS designs with 1 random start and 1-m2 sam-
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FIG. 2. Relative bias of variance (RBV) for systematic sampling (SYS) designs with $2 random starts. Mean
RBV is shown for each design for the clustered real population (A) and the random simulated population (B).
Abbreviations and design descriptors are as in Table 1. Bias was calculated using estimates of variance appro-
priate for SYS (equation 5). The dashed horizontal line at 0 represents no bias.

pling units. In those instances, mean RB was
0.048 when DAC/DAL # 1 and 0.122 when DAC/
DAL . 1.

When DAC/DAL # 1, the relative bias of vari-
ance (RBV) estimates for the real population de-
creased substantially when SYS designs had 3
random starts instead of 2, regardless of which
sampling unit size was used, but increasing the
number of random starts beyond 3 did not re-
sult in any additional decrease in bias (Fig. 2A).
When DAC/DAL . 1, using .2 random starts did
not decrease RBV estimates for the real popu-
lation (Fig. 2A). RBV estimates for the simulated
population did decrease as number of random
starts increased (Fig. 2B), but the decrease was
less substantial for designs that used 1-m2 sam-
pling units and a DAC/DAL . 1 than for designs
that used 0.25-m2 sampling units and a DAC/DAL

# 1.
CIs calculated using SRS formulae deviated

from the expected coverage (0.95) when SYS de-
signs (Table 4) were used to sample the real and

simulated populations, but deviations from ex-
pected (both above and below 0.95) were more
pronounced when the real population was sam-
pled. CI coverage based on variance formulae
appropriate for SYS performed better and gave
CI coverage much closer to the expected 95%
than CI coverage based on variance formulae
appropriate for SRS. The systematic formulae,
however, did result in substantially lower cov-
erage than the expected 95%, when sampling
from the real clustered population using 1-m2

sampling units.

Quantifying degree of spatial clustering

All 3 measures of spatial clustering showed
some bias, but severity and direction of bias (i.e.,
positive or negative) varied among the 3 statis-
tics (Fig. 3). Positive bias indicates that the spa-
tial distribution of a particular sample is likely
to be classified as spatially clustered when it re-
ally is random. Negative bias indicates that a
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TABLE 4. Mean confidence interval (CI) coverage for each group of sampling designs used to simulate
sampling a spatially random simulated population or a clustered real population (see text for details). Abbre-
viations and design descriptors are as in Tables 1 and 2. Number of designs indicates how many designs were
examined for each group specified. CIs were calculated using formulae appropriate for SRS and for SYS designs.
Equations used for finding values in each column are noted in column headings. Bold font indicates that the
mean CI coverage differed from the expected 95% by .1.5%. Blank spaces indicate equations 4, 5, and 6 could
not be used because the designs had only 1 RS (see text for details).

Design

Sampling-
unit size

(m2) DAC/DAL RS
No. of

designs

Confidence interval coverage

Simulated population

SRS
(Eqn 2, 3, 6)

SYS
(Eqns 4, 5, 6)

Real population

SRS
(Eqns 2, 3, 6)

SYS
(Eqns 4, 5, 6)

SRS
SRS
SYS
SYS
SYS

0.25
1
0.25
0.25
0.25

#1
.1
#1

1
1

.1

10
10
19
13
54

0.947
0.950
0.938
0.934
0.946 0.945

0.936
0.922
0.939
0.892
0.948 0.942

SYS
SYS
SYS

0.25
1
1

.1
#1
.1

.1
1
1

39
14
9

0.954
0.931
0.940

0.939 0.913
0.967
0.954

0.941

SYS
SYS

1
1

#1
.1

.1

.1
30
20

0.947
0.947

0.944
0.943

0.972
0.882

0.920
0.935

spatial distribution is likely to be classified as
random when it really is clustered. When sam-
pling the real population, the Hopkins Statistic
was negatively biased when a 0.25-m2 sampling
unit was used and positively biased when a 1-
m2 sampling unit was used, and relative bias of
the Hopkins Statistic decreased slightly as sam-
pling effort increased (Fig. 3). When sampling
the simulated population, the Hopkins Statistic
was positively biased at low levels of sampling
effort but had little or no bias as effort increased.
The Clumping Index was less biased when sam-
pling the real population than when sampling
the simulated population (Fig. 3). SYS designs
using 1-m2 sampling units caused the largest
bias in the Clumping Index. Morisita’s Index
was the most reliable method for quantifying
spatial clustering and resulted in the least bias
overall. By reliable, we mean that bias decreased
as effort increased in a similar manner for both
the simulated and real populations and for both
sample-unit sizes. When sampling the real pop-
ulation, Morisita’s Index showed some negative
bias with SYS designs using 1-m2 sampling
units, but it performed very well with SYS de-
signs using 0.25-m2 sampling units (Fig. 3).

The distributional assumptions of Hopkins
Statistic also were examined. Our empirical re-
sults indicated that the Hopkins Statistic was

overly sensitive to departures from spatial ran-
domness. The probability of Type I error (prob-
ability of classifying a random population as
clustered) was k5% (F-test). This over-sensitiv-
ity did not appear to decrease when sampling
effort was increased, the number of random
starts in SYS designs was increased, or an op-
timal DAC/DAL was chosen (Table 5). The Type
II error (probability of classifying the clustered
real population as spatially random) showed
substantial variability when a 5 5%. Overall,
SYS designs with 1 random start using 0.25-m2

sampling units had the highest Type II error
rates.

Predicting spatial distribution

The SMSE was lowest for SRS designs, SYS
designs with DAC/DAL # 1, and SYS designs
with DAC/DAL 5 1 (Table 6). MMSE was lowest
for SYS designs with DAC/DAL 5 1 (Table 6), but
its performance was more variable than SMSE,
possibly because of the sensitivity of the sample
maximum to outliers. Moreover, the subjectivity
inherent to the process of selecting a semivario-
gram model for kriging was a primary source
of error in these results, but one that we could
not quantify.
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FIG. 3. Bias in 3 measures of spatial clustering as a function of sampling effort using simple random sam-
pling (SRS) and systematic sampling (SYS) designs with different sampling-unit sizes (0.25 m2 and 1 m2) for
real and simulated populations. Dashed horizontal lines at 0 represent no bias.

Discussion

Optimal design

SYS designs with 2 or 3 random starts using
0.25-m2 sampling units provided reliable infor-

mation for estimating abundance, quantifying
spatial clustering, and predicting spatial distri-
bution. Comparisons of RBV estimates indicated
that using 3 random starts provides more ac-
curacy than using 2 random starts when esti-
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TABLE 5. Type I and Type II error rates for Hopkins Statistic test of complete spatial randomness. Abbre-
viations and design descriptors are as in Tables 1 and 2. Type I error rate is the probability that a random
distribution is incorrectly classified as clustered and was calculated using samples from the random simulated
population. Type II error rate is the probability that a clustered population is incorrectly classified as random
if a 5 0.05 (Type I error rate). Type II error rate was calculated using samples from the clustered real population.
Groups of designs are identical to those in Table 4.

Design
Sampling-unit

size (m2) DAC/DAL RS

Hopkins Statistic

Type I error rate Type II error rate

SRS
SRS
SYS
SYS
SYS

0.25
1
0.25
0.25
0.25

#1
.1
#1

1
1

.1

0.0891
0.1021
0.0959
0.1026
0.0870

0.3400
0.0338
0.2775
0.2373
0.0848

SYS
SYS
SYS
SYS
SYS

0.25
1
1
1
1

.1
#1
.1
#1
.1

.1
1
1

.1

.1

0.0897
0.0698
0.0523
0.0886
0.0872

0.0844
0.0708
0.0919
0.0137
0.0255

TABLE 6. Summed Mean Square Error (SMSE) and
Maximum Mean Square Error (MMSE) for 6 sampling
designs. Designs consisted of simple random sam-
pling (SRS) or systematic sampling (SYS), and ;3% of
the site was sampled with each design. All SYS de-
signs had 3 random starts and were classified by the
distance between sampling units across the stream
(DAC) and the distance between units along the stream
(DAL). SMSE and MMSE are means based on kriged
predictions taken from each of 50 sampling realiza-
tions for each design. Values within a column with the
same letter are not significantly different (p . 0.05).

Design DAC 3 DAL DAC/DAL SMSE MMSE

SRS
SYS
SYS
SYS
SYS
SYS

5 3 20
20 3 5
10 3 10

6 3 17
17 3 6

0.25
4.0
1.0
0.35
2.83

2295.10a

2298.05a,b

2386.97c

2302.87b

2336.48c

2336.48c

85.62d

83.19c

86.50e

79.83a

82.08b

81.17b

mating variance of abundance in a clustered
population. However, using .3 random starts
does not provide substantially more accuracy in
estimating RBV in clustered distributions. These
same design recommendations also provide the
most accurate CI coverage. The disparities in CI
coverage shown in Table 4 may seem relatively
slight, but even small inaccuracies can lead to
incorrect conclusions in tests of hypotheses.

Size of sampling unit

We recommend 0.25-m2 sampling units over
1-m2 sampling units because the smaller unit re-
quires less effort. Thus, more sampling units
can be observed for the same amount of effort,
assuming that travel cost between units is not
overwhelming. A survey with more sampling
units will provide better spatial coverage of the
study area, a larger sample size, and more pre-
cise estimates than a survey with fewer sam-
pling units. Our comparisons among designs
differing only in sampling-unit size confirmed
previous studies indicating that surveys using
small sampling units are efficient for clustered
populations (Elliott 1977). Strayer and Smith
(2003) simulated SRS of the Cacapon River
freshwater mussel populations to estimate spe-
cies-specific density and compared efficiencies
of sampling-unit sizes of 0.25, 0.5, 1, 2, and 4
m2 and of 1-m-wide transects oriented across or
with the current. They found that the coefficient

of variation was lowest for 0.25-m2 sampling
units and that the advantage of the smallest
sampling unit was greatest for the most clus-
tered population. However, they also found that
high per unit setup costs would reduce the com-
parative advantage of smaller units.

Systematic vs random sampling

Our results corroborate the utility of SYS for
spatial prediction and to identify optimal de-
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signs in terms of multiple starts and distance
between units when applied to freshwater mus-
sel surveys. Smith et al. (2001) used kriging
based on SYS for spatial interpolation to identify
locations of mussel concentration in a large site
(18,600 m2) and overlaid the predicted spatial
distribution with the locations of potential im-
pacts from bridge replacement. Such analyses of
spatial distribution can be used to assess the
likelihood of negative impacts and to protect
critical populations. Our findings verify that a
survey design that provides uniform effort
throughout the site is preferred for studying
spatial distribution. SYS lends itself well to in-
terpolation methods such as kriging (Thompson
1992) because it satisfies the uniformity condi-
tion needed. As a practical consideration, SYS
with multiple random starts is easier to imple-
ment than SRS, and it retains a random com-
ponent that allows valid statistical inference.
Distance between systematically sampled units
across the current should be equal to or less
than the distance between units along the cur-
rent if no information about directional variation
is available. If information on directional varia-
tion within the study area is known, sampling
units can be set closer together in the direction
of more variation. Variation was greater across
the current than along the current in the fresh-
water mussel population we examined, and we
expect that spatial pattern to hold generally for
freshwater mussels in lotic environments.

Spatial clustering

The erratic bias of the Hopkins Statistic raises
some interesting questions about using nearest-
neighbor methods to quantify degree of spatial
clustering. The distribution of the individuals in
relation to the sampling units might possibly
make the Hopkins Statistic inappropriate for
quadrat sampling. Cressie (1993) emphasized
the extreme sensitivity of the Hopkins statistic
when sampling a clustered population, but he
did not discuss its accuracy when sampling a
spatially random population. Cressie (1993) dis-
cussed the effectiveness of using the Hopkins
statistic with respect to a sampling a population
of trees in which each sampling unit was an in-
dividual observation (one tree). Cressie’s (1993)
findings are more likely to be applicable to other
sample surveys where the goal is to sample
from a large population of individuals (e.g., a

large animal survey) in which animal locations
are the sampling units In contrast, we counted
individuals within sampling units. The calcu-
lations, which involve distances to nearest
neighbors, may be affected by some distances
between individual mussels that are within the
same sampling unit. These relatively small dis-
tances would not be present if the sampling
units were the individuals themselves rather
than the sampling units within which individ-
uals were found.

In conclusion, designing a sample survey is
an important and sometimes complex task. Fac-
tors such as prevalence, spatial distribution of
the sample population, and idiosyncrasies of the
area to be sampled must be taken into consid-
eration. In addition, almost all sampling studies
are limited by cost, labor, and, in many cases,
weather constraints. In light of these issues, SYS
provides a flexible and efficient method for field
sampling. The recommendations we have made
for sampling a clustered freshwater mussel pop-
ulation (e.g., using 0.25-m2 sampling units) are
ideal for the research goals presented here, but
may not fit the goals of studies involving other
species. However, regardless of species, it makes
sense to place sampling units closer together in
the direction of more variability. If no informa-
tion about directional variation is known, plac-
ing sampling units equal distances apart in all
directions is appropriate for a wide variety of
research goals. We think that almost all sam-
pling studies could benefit greatly from doing a
relatively small pilot study ahead of time to ob-
tain estimates of variability. Information gained
from a pilot study is often invaluable in design-
ing an appropriate sampling scheme.
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